Source code for neuralkg.model.KGEModel.TransR

import torch.nn as nn
import torch
import torch.nn.functional as F
from .model import Model
from IPython import embed


[docs]class TransR(Model): """Learning Entity and Relation Embeddings for Knowledge Graph Completion`_ (TransR), which building entity and relation embeddings in separate entity space and relation spaces Attributes: args: Model configuration parameters. epsilon: Calculate embedding_range. margin: Calculate embedding_range and loss. embedding_range: Uniform distribution range. ent_emb: Entity embedding, shape:[num_ent, emb_dim]. rel_emb: Relation embedding, shape:[num_rel, emb_dim]. transfer_matrix: Transfer entity and relation embedding, shape:[num_rel, emb_dim*emb_dim] .. _Translating Embeddings for Modeling Multi-relational Data: http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/download/9571/9523/ """ def __init__(self, args): super(TransR, self).__init__(args) self.args = args self.ent_emb = None self.rel_emb = None self.norm_flag = args.norm_flag self.init_emb()
[docs] def init_emb(self): self.epsilon = 2.0 self.margin = nn.Parameter( torch.Tensor([self.args.margin]), requires_grad=False ) self.embedding_range = nn.Parameter( torch.Tensor([(self.margin.item() + self.epsilon) / self.args.emb_dim]), requires_grad=False, ) self.ent_emb = nn.Embedding(self.args.num_ent, self.args.emb_dim) self.rel_emb = nn.Embedding(self.args.num_rel, self.args.emb_dim) self.transfer_matrix = nn.Embedding( self.args.num_rel, self.args.emb_dim * self.args.emb_dim ) nn.init.uniform_( tensor=self.ent_emb.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item(), ) nn.init.uniform_( tensor=self.rel_emb.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item(), ) diag_matrix = torch.eye(self.args.emb_dim) diag_matrix = diag_matrix.flatten().repeat(self.args.num_rel, 1) self.transfer_matrix.weight.data = diag_matrix
# nn.init.uniform_(tensor=self.transfer_matrix.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item())
[docs] def score_func(self, head_emb, relation_emb, tail_emb, mode): """Calculating the score of triples. The formula for calculating the score is :math:`\gamma - \| M_{r} {e}_h + r_r - M_{r}e_t \|_{p}^2` """ if self.norm_flag: head_emb = F.normalize(head_emb, 2, -1) relation_emb = F.normalize(relation_emb, 2, -1) tail_emb = F.normalize(tail_emb, 2, -1) if mode == "head-batch" or mode == "head_predict": score = head_emb + (relation_emb - tail_emb) else: score = (head_emb + relation_emb) - tail_emb score = self.margin.item() - torch.norm(score, p=1, dim=-1) return score
[docs] def forward(self, triples, negs=None, mode="single"): """The functions used in the training phase, calculate triple score.""" head_emb, relation_emb, tail_emb = self.tri2emb(triples, negs, mode) rel_transfer = self.transfer_matrix(triples[:, 1]) # shape:[bs, dim] head_emb = self._transfer(head_emb, rel_transfer, mode) tail_emb = self._transfer(tail_emb, rel_transfer, mode) score = self.score_func(head_emb, relation_emb, tail_emb, mode) return score
[docs] def get_score(self, batch, mode): """The functions used in the testing phase, predict triple score.""" triples = batch["positive_sample"] head_emb, relation_emb, tail_emb = self.tri2emb(triples, mode=mode) rel_transfer = self.transfer_matrix(triples[:, 1]) # shape:[bs, dim] head_emb = self._transfer(head_emb, rel_transfer, mode) tail_emb = self._transfer(tail_emb, rel_transfer, mode) score = self.score_func(head_emb, relation_emb, tail_emb, mode) return score
def _transfer(self, emb, rel_transfer, mode): """Transfer entity embedding with relation-specific matrix. Args: emb: Entity embeddings, shape:[batch_size, emb_dim] rel_transfer: Relation-specific projection matrix, shape:[batch_size, emb_dim] mode: Choose head-predict or tail-predict, Defaults to 'single'. Returns: transfered entity emb: Shape:[batch_size, emb_dim] """ rel_transfer = rel_transfer.view(-1, self.args.emb_dim, self.args.emb_dim) rel_transfer = rel_transfer.unsqueeze(dim=1) emb = emb.unsqueeze(dim=-2) emb = torch.matmul(emb, rel_transfer) return emb.squeeze(dim=-2)