Description of basic parameters¶
model_name
: The name of model.
dataset_name
: The name of dataset.
data_path
: The folder path of dataset.
data_class
: The name of data preprocessing module, default KGDataModule.
litmodel_name
: The name of processing module of training, evaluation and testing, default KGELitModel.
train_sampler_class
: Sampling method used in training, default UniSampler.
test_sampler_class
: Sampling method used in validation and testing, default TestSampler.
loss_name
: The name of loss function.
negative_adversarial_sampling
: Use self-adversarial negative sampling.
optim_name
: The name of optimizer.
seed
: Random seed.
margin
: The fixed margin in loss function.
adv_temp
: The temperature of sampling in self-adversarial negative sampling.
emb_dim
: The embedding dimension in KGE model.
out_dim
: The output embedding dimmension in some KGE model.
max_epochs
: The maximum epoch in training.
lr
: Learning rate
train_bs
: Batch size in training.
eval_bs
: Bathc size in evaluation and testing.
num_neg
: The number of negative samples corresponding to each positive sample
num_ent
: The number of entity, autogenerate.
num_rel
: The number of relation, autogenerate.
check_per_epoch
: Evaluation per n epoch of training.
early_stop_patience
: If the number of consecutive bad results is n, early stop.
num_layers
: The number of layers in some GNN model.
decoder_model
: The name of decoder model, in some model.
eval_task
: The task of validation, default link_prediction.
calc_hits
: Calculate the hit rate, default [1,3,10].
gpu
: Select the GPU in training, default cuda:0.
filter_flag
: Filter in negative sampling.
use_wandb
: Use “weight and bias” to record the result.
use_weight
: Use subsampling weight.
checkpoint_dir
: The checkpoint model path.
save_config
: Save parameters config file.
load_config
: Load parameters config file.
config_path
: The config path.