Source code for neuralkg.model.KGEModel.TransH

import torch.nn as nn
import torch
import torch.nn.functional as F
from .model import Model
from IPython import embed


[docs]class TransH(Model): """`Knowledge Graph Embedding by Translating on Hyperplanes`_ (TransH), which apply the translation from head to tail entity in a relational-specific hyperplane in order to address its inability to model one-to-many, many-to-one, and many-to-many relations. Attributes: args: Model configuration parameters. epsilon: Calculate embedding_range. margin: Calculate embedding_range and loss. embedding_range: Uniform distribution range. ent_emb: Entity embedding, shape:[num_ent, emb_dim]. rel_emb: Relation embedding, shape:[num_rel, emb_dim]. norm_vector: Relation-specific projection matrix, shape:[num_rel, emb_dim] .. _Knowledge Graph Embedding by Translating on Hyperplanes: https://ojs.aaai.org/index.php/AAAI/article/view/8870 """ def __init__(self, args): super(TransH, self).__init__(args) self.args = args self.ent_emb = None self.rel_emb = None self.norm_flag = args.norm_flag self.init_emb()
[docs] def init_emb(self): self.epsilon = 2.0 self.margin = nn.Parameter( torch.Tensor([self.args.margin]), requires_grad=False ) self.embedding_range = nn.Parameter( torch.Tensor([(self.margin.item() + self.epsilon) / self.args.emb_dim]), requires_grad=False, ) self.ent_emb = nn.Embedding(self.args.num_ent, self.args.emb_dim) self.rel_emb = nn.Embedding(self.args.num_rel, self.args.emb_dim) self.norm_vector = nn.Embedding(self.args.num_rel, self.args.emb_dim) nn.init.uniform_( tensor=self.ent_emb.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item(), ) nn.init.uniform_( tensor=self.rel_emb.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item(), ) nn.init.uniform_( tensor=self.norm_vector.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item(), )
[docs] def score_func(self, head_emb, relation_emb, tail_emb, mode): """Calculating the score of triples. The formula for calculating the score is :math:`\gamma - \|e'_{h,r} + d_r - e'_{t,r}\|_{p}^2` Args: head_emb: The head entity embedding. relation_emb: The relation embedding. tail_emb: The tail entity embedding. mode: Choose head-predict or tail-predict. Returns: score: The score of triples. """ if self.norm_flag: head_emb = F.normalize(head_emb, 2, -1) relation_emb = F.normalize(relation_emb, 2, -1) tail_emb = F.normalize(tail_emb, 2, -1) if mode == "head-batch" or mode == "head_predict": score = head_emb + (relation_emb - tail_emb) else: score = (head_emb + relation_emb) - tail_emb score = self.margin.item() - torch.norm(score, p=1, dim=-1) return score
[docs] def forward(self, triples, negs=None, mode="single"): """The functions used in the training phase, same as TransE""" head_emb, relation_emb, tail_emb = self.tri2emb(triples, negs, mode) norm_vector = self.norm_vector(triples[:, 1]).unsqueeze( dim=1 ) # shape:[bs, 1, dim] head_emb = self._transfer(head_emb, norm_vector) tail_emb = self._transfer(tail_emb, norm_vector) score = self.score_func(head_emb, relation_emb, tail_emb, mode) return score
[docs] def get_score(self, batch, mode): """The functions used in the testing phase, same as TransE""" triples = batch["positive_sample"] head_emb, relation_emb, tail_emb = self.tri2emb(triples, mode=mode) norm_vector = self.norm_vector(triples[:, 1]).unsqueeze( dim=1 ) # shape:[bs, 1, dim] head_emb = self._transfer(head_emb, norm_vector) tail_emb = self._transfer(tail_emb, norm_vector) score = self.score_func(head_emb, relation_emb, tail_emb, mode) return score
def _transfer(self, emb, norm_vector): """Projecting entity embeddings onto the relation-specific hyperplane The formula for Projecting entity embeddings is :math:`e'_{r} = e - w_r^\Top e w_r` Args: emb: Entity embeddings, shape:[batch_size, emb_dim] norm_vector: Relation-specific projection matrix, shape:[num_rel, emb_dim] Returns: projected entity emb: Shape:[batch_size, emb_dim] """ if self.norm_flag: norm_vector = F.normalize(norm_vector, p=2, dim=-1) return emb - torch.sum(emb * norm_vector, -1, True) * norm_vector