Source code for neuralkg.model.KGEModel.DistMult

import torch.nn as nn
import torch
from .model import Model
from IPython import embed


[docs]class DistMult(Model): """`Embedding Entities and Relations for Learning and Inference in Knowledge Bases`_ (DistMult) Attributes: args: Model configuration parameters. epsilon: Calculate embedding_range. margin: Calculate embedding_range and loss. embedding_range: Uniform distribution range. ent_emb: Entity embedding, shape:[num_ent, emb_dim]. rel_emb: Relation_embedding, shape:[num_rel, emb_dim]. .. _Embedding Entities and Relations for Learning and Inference in Knowledge Bases: https://arxiv.org/abs/1412.6575 """ def __init__(self, args): super(DistMult, self).__init__(args) self.args = args self.ent_emb = None self.rel_emb = None self.init_emb()
[docs] def init_emb(self): """Initialize the entity and relation embeddings in the form of a uniform distribution.""" self.epsilon = 2.0 self.margin = nn.Parameter( torch.Tensor([self.args.margin]), requires_grad=False ) self.embedding_range = nn.Parameter( torch.Tensor([(self.margin.item() + self.epsilon) / self.args.emb_dim]), requires_grad=False ) self.ent_emb = nn.Embedding(self.args.num_ent, self.args.emb_dim) self.rel_emb = nn.Embedding(self.args.num_rel, self.args.emb_dim) nn.init.uniform_(tensor=self.ent_emb.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item()) nn.init.uniform_(tensor=self.rel_emb.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item())
[docs] def score_func(self, head_emb, relation_emb, tail_emb, mode): """Calculating the score of triples. The formula for calculating the score is :math:`h^{\top} \operatorname{diag}(r) t` Args: head_emb: The head entity embedding. relation_emb: The relation embedding. tail_emb: The tail entity embedding. mode: Choose head-predict or tail-predict. Returns: score: The score of triples. """ if mode == 'head-batch': score = head_emb * (relation_emb * tail_emb) else: score = (head_emb * relation_emb) * tail_emb score = score.sum(dim = -1) return score
[docs] def forward(self, triples, negs=None, mode='single'): """The functions used in the training phase Args: triples: The triples ids, as (h, r, t), shape:[batch_size, 3]. negs: Negative samples, defaults to None. mode: Choose head-predict or tail-predict, Defaults to 'single'. Returns: score: The score of triples. """ head_emb, relation_emb, tail_emb = self.tri2emb(triples, negs, mode) score = self.score_func(head_emb, relation_emb, tail_emb, mode) return score
[docs] def get_score(self, batch, mode): """The functions used in the testing phase Args: batch: A batch of data. mode: Choose head-predict or tail-predict. Returns: score: The score of triples. """ triples = batch["positive_sample"] head_emb, relation_emb, tail_emb = self.tri2emb(triples, mode=mode) score = self.score_func(head_emb, relation_emb, tail_emb, mode) return score