Source code for neuralkg.model.GNNModel.XTransE

import torch.nn as nn
import torch
from IPython import embed
from neuralkg.model.KGEModel.model import Model

[docs]class XTransE(Model): """`Explainable Knowledge Graph Embedding for Link Prediction with Lifestyles in e-Commerce`_ (XTransE), which introduces the attention to aggregate the neighbor node representation. Attributes: args: Model configuration parameters. .. _Explainable Knowledge Graph Embedding for Link Prediction with Lifestyles in e-Commerce: https://link.springer.com/content/pdf/10.1007%2F978-981-15-3412-6_8.pdf """ def __init__(self, args): super(XTransE, self).__init__(args) self.args = args self.ent_emb = None self.rel_emb = None self.init_emb()
[docs] def init_emb(self): """Initialize the entity and relation embeddings in the form of a uniform distribution. Args: margin: Caculate embedding_range and loss. embedding_range: Uniform distribution range. ent_emb: Entity embedding, shape:[num_ent, emb_dim]. rel_emb: Relation_embedding, shape:[num_rel, emb_dim]. """ self.margin = nn.Parameter( torch.Tensor([self.args.margin]), requires_grad=False ) self.embedding_range = nn.Parameter( torch.Tensor([6.0 / float(self.args.emb_dim).__pow__(0.5)]), requires_grad=False ) self.ent_emb = nn.Embedding(self.args.num_ent, self.args.emb_dim) self.rel_emb = nn.Embedding(self.args.num_rel, self.args.emb_dim) nn.init.uniform_(tensor=self.ent_emb.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item()) nn.init.uniform_(tensor=self.rel_emb.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item())
[docs] def score_func(self, triples, neighbor=None, mask=None, negs=None, mode='single'): """Calculating the score of triples. Args: triples: The triples ids, as (h, r, t), shape:[batch_size, 3]. neighbor: The neighbors of tail entities. mask: The mask of neighbor nodes negs: Negative samples, defaults to None. mode: Choose head-predict or tail-predict, Defaults to 'single'. Returns: score: The score of triples. """ head = triples[:,0] rela = triples[:,1] tail = triples[:,2] if mode == 'tail-batch': tail = negs.squeeze(1) norm_emb_ent = nn.functional.normalize(self.ent_emb.weight, dim=1, p=2) # [ent, dim] norm_emb_rel = nn.functional.normalize(self.rel_emb.weight, dim=1, p=2) # [rel, dim] neighbor_tail_emb = norm_emb_ent[neighbor[:, :, 1]] # [batch, neighbor, dim] neighbor_rela_emb = norm_emb_rel[neighbor[:, :, 0]] # [batch, neighbor, dim] neighbor_head_emb = neighbor_tail_emb - neighbor_rela_emb rela_emb = norm_emb_rel[rela] # [batch, dim] tail_emb = norm_emb_ent[tail] # [batch, dim] head_emb = norm_emb_ent[head] h_rt_embedding = tail_emb - rela_emb attention_rt = torch.zeros([self.args.train_bs, 200]).type_as(self.ent_emb.weight) attention_rt = (neighbor_head_emb * h_rt_embedding.unsqueeze(1)).sum(dim=2) * mask attention_rt = nn.functional.softmax(attention_rt, dim=1).unsqueeze(2) head_emb = head_emb + \ torch.bmm(neighbor_head_emb.permute(0,2,1), attention_rt).reshape([-1,self.args.emb_dim]) score = self.margin.item() - torch.norm(head_emb + rela_emb - tail_emb, p=2, dim=1) return score.unsqueeze(1)
[docs] def transe_func(self, head_emb, rela_emb, tail_emb): """Calculating the score of triples with TransE model. Args: head_emb: The head entity embedding. rela_emb: The relation embedding. tail_emb: The tail entity embedding. Returns: score: The score of triples. """ score = (head_emb + rela_emb) - tail_emb score = self.margin.item() - torch.norm(score, p=2, dim=-1) return score
[docs] def forward(self, triples, neighbor=None, mask=None, negs=None, mode='single'): """The functions used in the training and testing phase Args: triples: The triples ids, as (h, r, t), shape:[batch_size, 3]. neighbor: The neighbors of tail entities. mask: The mask of neighbor nodes negs: Negative samples, defaults to None. mode: Choose head-predict or tail-predict, Defaults to 'single'. Returns: score: The score of triples. """ head_emb, relation_emb, tail_emb = self.tri2emb(triples, negs, mode) TransE_score = self.transe_func(head_emb, relation_emb, tail_emb) XTransE_score = self.score_func(triples, neighbor, mask, negs, mode) return TransE_score + XTransE_score
[docs] def get_score(self, batch, mode): """The functions used in the testing phase Args: batch: A batch of data. mode: Choose head-predict or tail-predict. Returns: score: The score of triples. """ triples = batch["positive_sample"] head_emb, relation_emb, tail_emb = self.tri2emb(triples, mode=mode) score = self.transe_func(head_emb, relation_emb, tail_emb) return score