Source code for neuralkg.lit_model.XTransELitModel

from logging import debug
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
import json
from collections import defaultdict as ddict
from IPython import embed
from .BaseLitModel import BaseLitModel
from neuralkg.eval_task import *
from IPython import embed

from functools import partial

[docs]class XTransELitModel(BaseLitModel): def __init__(self, model, args): super().__init__(model, args)
[docs] def forward(self, x): return self.model(x)
[docs] def training_step(self, batch, batch_idx): triples = batch["positive_sample"] neg = batch["negative_sample"] neighbor = batch["neighbor"] mask = batch['mask'] mode = batch['mode'] pos_score = self.model(triples, neighbor, mask) neg_score = self.model(triples, neighbor, mask, neg, mode=mode) loss = self.loss(pos_score, neg_score) self.log("Train|loss", loss, on_step=False, on_epoch=True) return loss
[docs] def validation_step(self, batch, batch_idx): # pos_triple, tail_label, head_label = batch results = dict() ranks = link_predict(batch, self.model, prediction='all') results["count"] = torch.numel(ranks) results["mrr"] = torch.sum(1.0 / ranks).item() for k in self.args.calc_hits: results['hits@{}'.format(k)] = torch.numel(ranks[ranks <= k]) return results
[docs] def validation_epoch_end(self, results) -> None: outputs = self.get_results(results, "Eval") # self.log("Eval|mrr", outputs["Eval|mrr"], on_epoch=True) self.log_dict(outputs, prog_bar=True, on_epoch=True)
[docs] def test_step(self, batch, batch_idx): results = dict() ranks = link_predict(batch, self.model, prediction='all') results["count"] = torch.numel(ranks) results["mrr"] = torch.sum(1.0 / ranks).item() for k in self.args.calc_hits: results['hits@{}'.format(k)] = torch.numel(ranks[ranks <= k]) return results
[docs] def test_epoch_end(self, results) -> None: outputs = self.get_results(results, "Test") self.log_dict(outputs, prog_bar=True, on_epoch=True)
'''这里设置优化器和lr_scheduler'''
[docs] def configure_optimizers(self): milestones = int(self.args.max_epochs / 2) optimizer = self.optimizer_class(self.model.parameters(), lr=self.args.lr) StepLR = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[milestones], gamma=0.1) optim_dict = {'optimizer': optimizer, 'lr_scheduler': StepLR} return optim_dict