Source code for neuralkg.lit_model.RugELitModel

from logging import debug
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
import json
from collections import defaultdict as ddict
from IPython import embed
from neuralkg import loss
from .BaseLitModel import BaseLitModel
from neuralkg.eval_task import *
from IPython import embed

from functools import partial
from neuralkg.data import RuleDataLoader
from tqdm import tqdm
import pdb


[docs]class RugELitModel(BaseLitModel): def __init__(self, model, args): super().__init__(model, args) self.args = args self.temp_list = [] self.rule_dataloader = RuleDataLoader(self.args) tq = tqdm(self.rule_dataloader, desc='{}'.format('rule'), ncols=0) print('start first load') for new_data in tq: self.temp_list.append(new_data)
[docs] def forward(self, x): return self.model(x)
[docs] def training_step(self, batch, batch_idx): pos_sample = batch["positive_sample"] neg_sample = batch["negative_sample"] mode = batch["mode"] pos_score = self.model(pos_sample) neg_score = self.model(pos_sample, neg_sample, mode) rule, confidence, triple_num = self.temp_list[0][0], self.temp_list[0][1], self.temp_list[0][2] loss = self.loss(pos_score, neg_score, rule, confidence, triple_num, len(pos_sample)) self.temp_list.remove(self.temp_list[0]) self.log("Train|loss", loss, on_step=False, on_epoch=True) return loss
[docs] def training_epoch_end(self, training_step_outputs): self.temp_list = [] print('start reload') tq = tqdm(self.rule_dataloader, desc='{}'.format('rule'), ncols=0) for new_data in tq: self.temp_list.append(new_data)
[docs] def validation_step(self, batch, batch_idx): # pos_triple, tail_label, head_label = batch results = dict() ranks = link_predict(batch, self.model, prediction='all') results["count"] = torch.numel(ranks) results["mrr"] = torch.sum(1.0 / ranks).item() for k in self.args.calc_hits: results['hits@{}'.format(k)] = torch.numel(ranks[ranks <= k]) return results
[docs] def validation_epoch_end(self, results) -> None: outputs = self.get_results(results, "Eval") # self.log("Eval|mrr", outputs["Eval|mrr"], on_epoch=True) self.log_dict(outputs, prog_bar=True, on_epoch=True)
[docs] def test_step(self, batch, batch_idx): results = dict() ranks = link_predict(batch, self.model, prediction='all') results["count"] = torch.numel(ranks) results["mrr"] = torch.sum(1.0 / ranks).item() for k in self.args.calc_hits: results['hits@{}'.format(k)] = torch.numel(ranks[ranks <= k]) return results
[docs] def test_epoch_end(self, results) -> None: outputs = self.get_results(results, "Test") self.log_dict(outputs, prog_bar=True, on_epoch=True)
'''这里设置优化器和lr_scheduler'''
[docs] def configure_optimizers(self): # milestones = int(self.args.max_epochs / 2) optimizer = self.optimizer_class(self.model.parameters(), lr=self.args.lr) # StepLR = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[milestones], gamma=0.1) optim_dict = {'optimizer': optimizer} return optim_dict