Source code for neuralkg.lit_model.KBATLitModel

from logging import debug
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
import json
from collections import defaultdict as ddict
from IPython import embed
from .BaseLitModel import BaseLitModel
from neuralkg.eval_task import *
from IPython import embed

from functools import partial

[docs]class KBATLitModel(BaseLitModel): def __init__(self, model, args): super().__init__(model, args)
[docs] def forward(self, x): return self.model(x)
[docs] def training_step(self, batch, batch_idx): num_epoch = self.current_epoch if num_epoch < 3000: model = "GAT" adj = batch['adj_matrix'] n_hop = batch['n_hop'] pos_triple = batch['triples_GAT_pos'] neg_triple = batch['triples_GAT_neg'] pos_score = self.model(pos_triple, model, adj, n_hop) neg_score = self.model(neg_triple, model, adj, n_hop) loss = self.loss(model, pos_score, neg_score) else: model = "ConvKB" triples = batch['triples_Con'] label = batch['label'] score = self.model(triples, model) loss = self.loss(model, score, label=label) self.log("Train|loss", loss, on_step=False, on_epoch=True) return loss
[docs] def validation_step(self, batch, batch_idx): # pos_triple, tail_label, head_label = batch results = dict() ranks = link_predict(batch, self.model, prediction='all') results["count"] = torch.numel(ranks) results["mrr"] = torch.sum(1.0 / ranks).item() for k in self.args.calc_hits: results['hits@{}'.format(k)] = torch.numel(ranks[ranks <= k]) return results
[docs] def validation_epoch_end(self, results) -> None: outputs = self.get_results(results, "Eval") # self.log("Eval|mrr", outputs["Eval|mrr"], on_epoch=True) self.log_dict(outputs, prog_bar=True, on_epoch=True)
[docs] def test_step(self, batch, batch_idx): results = dict() ranks = link_predict(batch, self.model, prediction='all') results["count"] = torch.numel(ranks) results["mrr"] = torch.sum(1.0 / ranks).item() for k in self.args.calc_hits: results['hits@{}'.format(k)] = torch.numel(ranks[ranks <= k]) return results
[docs] def test_epoch_end(self, results) -> None: outputs = self.get_results(results, "Test") self.log_dict(outputs, prog_bar=True, on_epoch=True)
'''这里设置优化器和lr_scheduler'''
[docs] def configure_optimizers(self): if self.current_epoch < 3000: optimizer = self.optimizer_class(self.model.parameters(), lr=self.args.lr, weight_decay=1e-6) StepLR = torch.optim.lr_scheduler.StepLR(optimizer, step_size=500, gamma=0.5, last_epoch=-1) else: optimizer = self.optimizer_class(self.model.parameters(), lr=self.args.lr, weight_decay=1e-5) StepLR = torch.optim.lr_scheduler.StepLR(optimizer, step_size=25, gamma=0.5, last_epoch=-1) optim_dict = {'optimizer': optimizer, 'lr_scheduler': StepLR} return optim_dict