Source code for neuralkg.lit_model.IterELitModel

from logging import debug
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
import json
from collections import defaultdict as ddict
from IPython import embed
from .BaseLitModel import BaseLitModel
from neuralkg.eval_task import *
from IPython import embed

import pickle
import time

from functools import partial

[docs]class IterELitModel(BaseLitModel): def __init__(self, model, args): super().__init__(model, args) self.epoch=0
[docs] def forward(self, x): return self.model(x)
[docs] def training_step(self, batch, batch_idx): pos_sample = batch["positive_sample"] neg_sample = batch["negative_sample"] mode = batch["mode"] pos_score = self.model(pos_sample) neg_score = self.model(pos_sample, neg_sample, mode) if self.args.use_weight: subsampling_weight = batch["subsampling_weight"] loss = self.loss(pos_score, neg_score, subsampling_weight) else: loss = self.loss(pos_score, neg_score) self.log("Train|loss", loss, on_step=False, on_epoch=True) return loss
[docs] def training_epoch_end(self, results): self.epoch+=1 if self.epoch % self.args.update_axiom_per == 0 and self.epoch !=0: #if True: # axioms include probability for each axiom in axiom pool # order: ref, sym, tran, inver, sub, equi, inferC # update_axioms: # 1) calculate probability for each axiom in axiom pool with current embeddings # 2) update the valid_axioms axioms_probability = self.update_axiom() #self.model.update_train_triples(epoch = self.epoch, update_per= self.args.update_axiom_per) updated_train_data = self.model.update_train_triples(epoch = self.epoch, update_per= self.args.update_axiom_per) if updated_train_data: self.trainer.datamodule.data_train=updated_train_data
#print('axiom_probability: %s' % (axioms_probability))
[docs] def update_axiom(self): time_s = time.time() axiom_pro = self.model.run_axiom_probability() time_e = time.time() print('calculate axiom score:', time_e -time_s) with open('./save_axiom_prob/axiom_prob.pickle', 'wb') as f: pickle.dump(axiom_pro, f, pickle.HIGHEST_PROTOCOL) with open('./save_axiom_prob/axiom_pools.pickle', 'wb') as f: pickle.dump(self.model.axiompool, f, pickle.HIGHEST_PROTOCOL) self.model.update_valid_axioms(axiom_pro) return self.model.run_axiom_probability()
[docs] def validation_step(self, batch, batch_idx): # pos_triple, tail_label, head_label = batch results = dict() ranks = link_predict(batch, self.model, prediction='all') results["count"] = torch.numel(ranks) results["mrr"] = torch.sum(1.0 / ranks).item() for k in self.args.calc_hits: results['hits@{}'.format(k)] = torch.numel(ranks[ranks <= k]) return results
[docs] def validation_epoch_end(self, results) -> None: outputs = self.get_results(results, "Eval") # self.log("Eval|mrr", outputs["Eval|mrr"], on_epoch=True) self.log_dict(outputs, prog_bar=True, on_epoch=True)
[docs] def test_step(self, batch, batch_idx): results = dict() ranks = link_predict(batch, self.model, prediction='all') results["count"] = torch.numel(ranks) results["mrr"] = torch.sum(1.0 / ranks).item() for k in self.args.calc_hits: results['hits@{}'.format(k)] = torch.numel(ranks[ranks <= k]) return results
[docs] def test_epoch_end(self, results) -> None: outputs = self.get_results(results, "Test") self.log_dict(outputs, prog_bar=True, on_epoch=True)
'''这里设置优化器和lr_scheduler'''
[docs] def configure_optimizers(self): milestones = int(self.args.max_epochs / 2) optimizer = self.optimizer_class(self.model.parameters(), lr=self.args.lr) StepLR = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[milestones], gamma=0.1) optim_dict = {'optimizer': optimizer, 'lr_scheduler': StepLR} return optim_dict