Source code for neuralkg.lit_model.CrossELitModel

from logging import debug
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
import json
from collections import defaultdict as ddict
from IPython import embed
from .BaseLitModel import BaseLitModel
from neuralkg.eval_task import *
from IPython import embed

from functools import partial

[docs]class CrossELitModel(BaseLitModel): def __init__(self, model, args): super().__init__(model, args)
[docs] def forward(self, x): return self.model(x)
[docs] def training_step(self, batch, batch_idx): sample = batch["sample"] hr_label = batch["hr_label"] tr_label = batch["tr_label"] # sample_id = batch["sample_id"] # sample_score = self.model(sample, sample_id) hr_score, tr_score = self.model(sample) hr_loss = self.loss(hr_score, hr_label) tr_loss = self.loss(tr_score, tr_label) loss = hr_loss + tr_loss regularize_loss = self.args.weight_decay * self.model.regularize_loss(1) loss += regularize_loss self.log("Train|loss", loss, on_step=False, on_epoch=True) return loss
[docs] def validation_step(self, batch, batch_idx): # pos_triple, tail_label, head_label = batch results = dict() ranks = link_predict(batch, self.model, prediction='all') results["count"] = torch.numel(ranks) results["mrr"] = torch.sum(1.0 / ranks).item() for k in self.args.calc_hits: results['hits@{}'.format(k)] = torch.numel(ranks[ranks <= k]) return results
[docs] def validation_epoch_end(self, results) -> None: outputs = self.collect_results(results, "Eval") # self.log("Eval|mrr", outputs["Eval|mrr"], on_epoch=True) self.log_dict(outputs, prog_bar=True, on_epoch=True)
[docs] def test_step(self, batch, batch_idx): results = dict() ranks = link_predict(batch, self.model, prediction='all') results["count"] = torch.numel(ranks) results["mrr"] = torch.sum(1.0 / ranks).item() for k in self.args.calc_hits: results['hits@{}'.format(k)] = torch.numel(ranks[ranks <= k]) return results
[docs] def test_epoch_end(self, results) -> None: outputs = self.collect_results(results, "Test") self.log_dict(outputs, prog_bar=True, on_epoch=True)
'''这里设置优化器和lr_scheduler'''
[docs] def configure_optimizers(self): milestones = int(self.args.max_epochs / 2) # optimizer = self.optimizer_class(self.model.parameters(), lr=self.args.lr, weight_decay = self.args.weight_decay) optimizer = self.optimizer_class(self.model.parameters(), lr=self.args.lr) StepLR = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[milestones], gamma=0.1) optim_dict = {'optimizer': optimizer, 'lr_scheduler': StepLR} return optim_dict