Utils¶
setup_parser¶
tools¶
- neuralkg_ind.utils.tools.import_class(module_and_class_name: str) type [source]¶
Import class from a module, e.g. ‘model.TransE’
- neuralkg_ind.utils.tools.log_step_metrics(step, metrics)[source]¶
Print the evaluation logs for check_per_step
- neuralkg_ind.utils.tools.gen_subgraph_datasets(args, splits=['train', 'valid'], saved_relation2id=None, max_label_value=None)[source]¶
- neuralkg_ind.utils.tools.sample_neg(adj_list, edges, num_neg_samples_per_link=1, max_size=1000000, constrained_neg_prob=0)[source]¶
- neuralkg_ind.utils.tools.links2subgraphs(A, graphs, params, max_label_value=None, testing=False)[source]¶
extract enclosing subgraphs, write map mode + named dbs
- neuralkg_ind.utils.tools.subgraph_extraction_labeling(ind, rel, A_list, h=1, enclosing_sub_graph=False, max_nodes_per_hop=None, max_node_label_value=None)[source]¶
- neuralkg_ind.utils.tools.incidence_matrix(adj_list)[source]¶
adj_list: List of sparse adjacency matrices
- neuralkg_ind.utils.tools.bfs_relational(adj, roots, max_nodes_per_hop=None)[source]¶
BFS for graphs. Modified from dgl.contrib.data.knowledge_graph to accomodate node sampling
- neuralkg_ind.utils.tools.get_neighbors(adj, nodes)[source]¶
Takes a set of nodes and a graph adjacency matrix and returns a set of neighbors. Directly copied from dgl.contrib.data.knowledge_graph
- neuralkg_ind.utils.tools.sp_row_vec_from_idx_list(idx_list, dim)[source]¶
Create sparse vector of dimensionality dim from a list of indices.