Source code for neuralkg_ind.model.KGEModel.HAKE

import torch
import torch.nn as nn 
from .model import Model

[docs]class HAKE(Model): """`Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction`_ (HAKE), which maps entities into the polar coordinate system. Attributes: args: Model configuration parameters. epsilon: Calculate embedding_range. margin: Calculate embedding_range and loss. embedding_range: Uniform distribution range. ent_emb: Entity embedding, shape:[num_ent, emb_dim * 2]. rel_emb: Relation embedding, shape:[num_rel, emb_dim * 3]. phase_weight: Calculate phase score. modules_weight: Calculate modulus score. .. _Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction: https://arxiv.org/pdf/1911.09419.pdf """ def __init__(self, args): super(HAKE, self).__init__(args) self.args = args self.ent_emb = None self.rel_emb = None self.init_emb()
[docs] def init_emb(self): """Initialize the entity and relation embeddings in the form of a uniform distribution. """ self.epsilon = 2.0 self.margin = nn.Parameter( torch.Tensor([self.args.margin]), requires_grad=False, ) self.embedding_range = nn.Parameter( torch.Tensor([(self.margin.item() + self.epsilon) / self.args.emb_dim]), requires_grad=False, ) self.ent_emb = nn.Embedding(self.args.num_ent, self.args.emb_dim * 2) nn.init.uniform_( tensor = self.ent_emb.weight.data, a = -self.embedding_range.item(), b = self.embedding_range.item(), ) self.rel_emb = nn.Embedding(self.args.num_rel, self.args.emb_dim * 3) nn.init.uniform_( tensor = self.rel_emb.weight.data, a = -self.embedding_range.item(), b = self.embedding_range.item(), ) nn.init.ones_( tensor=self.rel_emb.weight[:, self.args.emb_dim: 2*self.args.emb_dim], ) nn.init.zeros_( tensor=self.rel_emb.weight[:, 2*self.args.emb_dim: 3*self.args.emb_dim] ) self.phase_weight = nn.Parameter( torch.Tensor([self.args.phase_weight * self.embedding_range.item()]) ) self.modules_weight = nn.Parameter( torch.Tensor([self.args.modulus_weight]) )
[docs] def score_func(self, head_emb, relation_emb, tail_emb, mode): """Calculating the score of triples. The formula for calculating the score is :math:`\gamma - ||h_m \circ r_m- t_m||_2 - \lambda ||\sin((h_p + r_p - t_p)/2)||_1` Args: head_emb: The head entity embedding. relation_emb: The relation embedding. tail_emb: The tail entity embedding. mode: Choose head-predict or tail-predict. Returns: score: The score of triples. """ phase_head, mod_head = torch.chunk(head_emb, 2, dim=-1) phase_tail, mod_tail = torch.chunk(tail_emb, 2, dim=-1) phase_rela, mod_rela, bias_rela = torch.chunk(relation_emb, 3, dim=-1) pi = 3.141592653589793 phase_head = phase_head / (self.embedding_range.item() / pi) phase_tail = phase_tail / (self.embedding_range.item() / pi) phase_rela = phase_rela / (self.embedding_range.item() / pi) if mode == 'head-batch': phase_score = phase_head + (phase_rela - phase_tail) else: phase_score = (phase_head + phase_rela) - phase_tail mod_rela = torch.abs(mod_rela) bias_rela = torch.clamp(bias_rela, max=1) indicator = (bias_rela < -mod_rela) bias_rela[indicator] = -mod_rela[indicator] r_score = mod_head * (mod_rela + bias_rela) - mod_tail * (1 - bias_rela) phase_score = torch.sum(torch.abs(torch.sin(phase_score /2)), dim=2) * self.phase_weight r_score = torch.norm(r_score, dim=2) * self.modules_weight return self.margin.item() - (phase_score + r_score)
[docs] def forward(self, triples, negs=None, mode='single'): """The functions used in the training phase Args: triples: The triples ids, as (h, r, t), shape:[batch_size, 3]. negs: Negative samples, defaults to None. mode: Choose head-predict or tail-predict, Defaults to 'single'. Returns: score: The score of triples. """ head_emb, relation_emb, tail_emb = self.tri2emb(triples, negs, mode) score = self.score_func(head_emb, relation_emb, tail_emb, mode) return score
[docs] def get_score(self, batch, mode): """The functions used in the testing phase Args: batch: A batch of data. mode: Choose head-predict or tail-predict. Returns: score: The score of triples. """ triples = batch['positive_sample'] head_emb, relation_emb, tail_emb = self.tri2emb(triples, mode=mode) score = self.score_func(head_emb, relation_emb, tail_emb, mode) return score