Source code for neuralkg_ind.model.GNNModel.RGCN

import torch
import torch.nn as nn
import torch.nn.functional as F
from .layer import GNNLayer
from .model import Model
from dgl import function as fn
from dgl.nn.pytorch.linear import TypedLinear
from neuralkg_ind.model import DistMult


[docs]class RGCN(Model): """`Modeling Relational Data with Graph Convolutional Networks`_ (RGCN), which use GCN framework to model relation data. Attributes: args: Model configuration parameters. .. _Modeling Relational Data with Graph Convolutional Networks: https://arxiv.org/pdf/1703.06103.pdf """ def __init__(self, args): super(RGCN, self).__init__(args) self.args = args self.ent_emb = None self.rel_emb = None self.layers = None self.Loss_emb = None self.init_emb() self.build_model()
[docs] def init_emb(self): """Initialize the RGCN model and embeddings Args: ent_emb: Entity embedding, shape:[num_ent, emb_dim]. rel_emb: Relation_embedding, shape:[num_rel, emb_dim]. """ self.ent_emb = nn.Embedding(self.args.num_ent,self.args.emb_dim) self.rel_emb = nn.Parameter(torch.Tensor(self.args.num_rel, self.args.emb_dim)) nn.init.xavier_uniform_(self.rel_emb, gain=nn.init.calculate_gain('relu'))
[docs] def forward(self, graph, ent, rel, norm, triples, mode='single'): """The functions used in the training and testing phase Args: graph: The knowledge graph recorded in dgl.graph() ent: The entitiy ids sampled in triples rel: The relation ids sampled in triples norm: The edge norm in graph triples: The triples ids, as (h, r, t), shape:[batch_size, 3]. mode: Choose head-predict or tail-predict, Defaults to 'single'. Returns: score: The score of triples. """ embedding = self.ent_emb(ent.squeeze()) for layer in self.layers: embedding = layer(graph, embedding, rel, norm) self.Loss_emb = embedding head_emb, rela_emb, tail_emb = self.tri2emb(embedding, triples, mode) score = DistMult.score_func(self, head_emb, rela_emb, tail_emb, mode) return score
[docs] def get_score(self, batch, mode): """The functions used in the testing phase Args: batch: A batch of data. mode: Choose head-predict or tail-predict. Returns: score: The score of triples. """ triples = batch['positive_sample'] graph = batch['graph'] ent = batch['entity'] rel = batch['rela'] norm = batch['norm'] embedding = self.ent_emb(ent.squeeze()) for layer in self.layers: embedding = layer(graph, embedding, rel, norm) self.Loss_emb = embedding head_emb, rela_emb, tail_emb = self.tri2emb(embedding, triples, mode) score = DistMult.score_func(self,head_emb, rela_emb, tail_emb, mode) return score
[docs] def tri2emb(self, embedding, triples, mode="single"): """Get embedding of triples. This function get the embeddings of head, relation, and tail respectively. each embedding has three dimensions. Args: embedding(tensor): This embedding save the entity embeddings. triples (tensor): This tensor save triples id, which dimension is [triples number, 3]. mode (str, optional): This arg indicates that the negative entity will replace the head or tail entity. when it is 'single', it means that entity will not be replaced. Defaults to 'single'. Returns: head_emb: Head entity embedding. rela_emb: Relation embedding. tail_emb: Tail entity embedding. """ rela_emb = self.rel_emb[triples[:, 1]].unsqueeze(1) # [bs, 1, dim] head_emb = embedding[triples[:, 0]].unsqueeze(1) # [bs, 1, dim] tail_emb = embedding[triples[:, 2]].unsqueeze(1) # [bs, 1, dim] if mode == "head-batch" or mode == "head_predict": head_emb = embedding.unsqueeze(0) # [1, num_ent, dim] elif mode == "tail-batch" or mode == "tail_predict": tail_emb = embedding.unsqueeze(0) # [1, num_ent, dim] return head_emb, rela_emb, tail_emb
[docs] def build_hidden_layer(self, idx): """The functions used to initialize the RGCN model Args: idx: it`s used to identify rgcn layers. The last rgcn layer should use relu as activation function. Returns: the relation graph convolution layer """ act = F.relu if idx < self.args.num_layers - 1 else None if self.args.num_bases > self.args.num_rel: self.args.num_bases = self.args.num_rel return RelGraphConv(self.args, self.args.emb_dim, self.args.emb_dim, self.args.num_rel, "bdd", num_bases=self.args.num_bases, activation=act, self_loop=True, dropout=0.2 )
[docs]class RelGraphConv(GNNLayer): def __init__(self, args, in_feat, out_feat, num_rels, regularizer=None, num_bases=None, bias=True, activation=None, self_loop=True, dropout=0.0, layer_norm=False): super().__init__() self.args = args self.linear_r = TypedLinear(in_feat, out_feat, num_rels, regularizer, num_bases) self.bias = bias self.activation = activation self.self_loop = self_loop self.layer_norm = layer_norm # bias if self.bias: self.h_bias = nn.Parameter(torch.Tensor(out_feat)) nn.init.zeros_(self.h_bias) # layer norm if self.layer_norm: self.layer_norm_weight = nn.LayerNorm(out_feat, elementwise_affine=True) # weight for self loop if self.self_loop: self.loop_weight = nn.Parameter(torch.Tensor(in_feat, out_feat)) nn.init.xavier_uniform_(self.loop_weight, gain=nn.init.calculate_gain('relu')) self.dropout = nn.Dropout(dropout)
[docs] def message(self, edges): """Message function.""" m = self.linear_r(edges.src['h'], edges.data['etype'], self.presorted) if 'norm' in edges.data: m = m * edges.data['norm'] return {'m' : m}
[docs] def forward(self, g, feat, etypes, norm=None, *, presorted=False): self.presorted = presorted with g.local_scope(): g.srcdata['h'] = feat if norm is not None: g.edata['norm'] = norm g.edata['etype'] = etypes # message passing g.update_all(self.message, fn.sum('m', 'h')) # apply bias and activation h = g.dstdata['h'] if self.layer_norm: h = self.layer_norm_weight(h) if self.bias: h = h + self.h_bias if self.self_loop: h = h + feat[:g.num_dst_nodes()] @ self.loop_weight if self.activation: h = self.activation(h) h = self.dropout(h) return h