import torch
import numpy as np
[docs]def classification(batch, model):
"""Calculating triple classification score.
Args:
batch: Positive sample and negative sample.
model: The model for testing.
Returns:
score: The positive sample score and the negative sample score.
"""
score = dict()
pos_sample = batch["positive_sample"]
score_pos = model(pos_sample)
score_pos = score_pos.squeeze(1).detach().cpu().tolist()
score["pos_scores"] = score_pos
neg_sample = batch["negative_sample"]
score_neg = model(neg_sample)
score_neg = score_neg.squeeze(1).detach().cpu().tolist()
score["neg_scores"] = score_neg
return score